
 

 
 

 

 

 

 

 

ACCURAT 
Analysis and Evaluation of Comparable Corpora  

for Under Resourced Areas of Machine Translation 

www.accurat-project.eu 

Project no. 248347 

 

 

 

 

 

 

 

 

 

Deliverable D3.5 

Tools for building comparable corpus from the Web 
 

 

 

Version No. 3.0 

29/06/2012 

 

 

  

http://www.accurat-project.eu/


 Contract no. 248347  

 

 

D3.5 V3.0  Page 2 of 46 

Document Information 

 

Deliverable number:  D3.5 

Deliverable title:  Tools for building comparable corpus from the Web 

Due date of deliverable:  31/10/2011 

Actual submission date of 

deliverable: 

31/10/2011 (version 1.0) 

31/03/2012 (version 2.0) 

29/06/2012 (version 3.0) 

Main Author(s):  Ahmet Aker, Evangelos Kanoulas, Judita Preiss, Monica Paramita, 

Rob Gaizauskas, Paul Clough, Emma Barker, Nikos Mastropavlos, 

Nikos Glaros, Radu Ion, Tiberiu Boroș, Mārcis Pinnis 

Participants: USFD, ILSP, RACAI, Tilde 

Internal reviewer: Tilde 

Workpackage: WP3 

Workpackage title: Methods and techniques for building a comparable corpus from the 

Web 

Workpackage leader: USFD 

Dissemination Level:  PU: Public 

Version: V3.0 

Keywords: Retrieval tools, web crawler, focused crawler, news search, parallel and 

comparable corpora 

 

History of Versions 

Version Date Status Name of the 

Author 

(Partner) 

Contributions Description/ 

Approval Level 

V0.1 01/09/2011 Draft USFD Skeleton Skeleton 

V0.1 20/09/2011 Draft ILSP, USFD Contributions  

Edited introduction, 

related work and the 

ILSP focused 

crawler 

V0.1 21/09/2011 Draft RACAI, 

USFD 
Contributions 

Edited RACAI 

crawler 

V0.1 28/09/2011 Draft USFD Contributions Early draft 

V0.2 30/09/2011 Draft USFD Contributions, Drafting For Internal Review 

V0.3 10/10/2011 Draft USFD Response to Comments For Internal Review 

V0.4 27/10/2011 Draft USFD Grammar/style revisions For Internal Review 

V0.5 30/10/2011 Draft ILSP Response to Comments For Internal Review 

V1.0 31/10/2011 Final Tilde Final Review Submitted to PO 

V2.0 31/03/2012  Tilde, ILSP Update after review Submitted to PO 

V2.1 09/05/2012  Tilde, USFD 
USFD updates for final 

version 
For Internal Review 

V2.2 04/06/2012  Tilde, ILSP, FMC and News For Internal Review 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 3 of 46 

USFD Downloader updates 

V2.3 25/06/2012  Tilde 
Document prepared for 

release 
For Internal Review 

V3.0 28/06/2012 Final Tilde  Version 3.0 released 

 

 

 

 

 

 

 

EXECUTIVE SUMMARY 

This document contains technical documentation of tools which have been used within the 

ACCURAT project to gather parallel and comparable corpora from the web. The tools include 

focused web crawlers, a Wikipedia corpus collector and news search tools.  

These corpora collecting tools together with the toolkit for multi-level alignment and information 

extraction from comparable corpora (D2.6 deliverable) provide interested users with a complete 

suite of tools (ACCURAT toolkit) for acquiring general domain or domain-specific training data 

for their SMT or Example-based/Rule-based MT systems. 

This deliverable contains step-by-step instructions explaining how to install and run the tools for 

comparable corpora acquisition. Significant effort has been made to ensure these instructions are 

understandable by users with average computer skills.  

The ACCURAT Toolkit is stored at the ACCURAT repository and is freely available after 

completing the registration form (http://www.accurat-project.eu/index.php?p=toolkit).  

  



 Contract no. 248347  

 

 

D3.5 V3.0  Page 4 of 46 

Table of Contents 

Table of Contents ...................................................................................................................... 4 

Abbreviations ............................................................................................................................ 6 

1. Introduction ......................................................................................................................... 7 

2. Related Work ...................................................................................................................... 9 

3. Description of Tools .......................................................................................................... 10 

3.1. A Workflow Based Corpora Crawler .................................................................................... 10 

3.1.1. Overview and Purpose .................................................................................................. 10 

3.1.2. Software Dependencies and System Requirements ...................................................... 10 

3.1.3. Installation ..................................................................................................................... 10 

3.1.4. Execution Instructions ................................................................................................... 10 

3.1.5. Input and Output Date Format ...................................................................................... 12 

3.1.6. Creating Blocks ............................................................................................................. 12 

3.1.7. Contact .......................................................................................................................... 13 

3.2. ILSP Focused Monolingual Crawler (FMC) ........................................................................ 13 

3.2.1. Overview and Purpose .................................................................................................. 13 

3.2.2. Software Dependencies and System Requirements ...................................................... 14 

3.2.3. Installation ..................................................................................................................... 15 

3.2.4. Execution Instructions ................................................................................................... 15 

3.2.5. Input and Output Data Format ...................................................................................... 20 

3.2.6. FMC Complementary tools ........................................................................................... 26 

3.2.7. Contact .......................................................................................................................... 30 

3.3. Wikipedia Retrieval Tool ...................................................................................................... 30 

3.3.1. Overview and Purpose .................................................................................................. 30 

3.3.2. Software Dependencies and System Requirements ...................................................... 30 

3.3.3. Installation ..................................................................................................................... 30 

3.3.4. Execution Instructions ................................................................................................... 31 

3.3.5. Input and Output Data Format ...................................................................................... 34 

3.3.6. Contact .......................................................................................................................... 36 

3.4. News Information Downloader using RSS feeds.................................................................. 36 

3.4.1. Overview and Purpose .................................................................................................. 36 

3.4.2. Software Dependencies and System Requirements ...................................................... 36 

3.4.3. Installation ..................................................................................................................... 36 

3.4.4. Execution Instructions ................................................................................................... 36 

3.4.5. Input and Output Data Format ...................................................................................... 36 

3.4.6. Contact .......................................................................................................................... 37 

3.5. News Information Downloader using Google News Search ................................................ 37 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 5 of 46 

3.5.1. Overview and Purpose .................................................................................................. 37 

3.5.2. Software Dependencies and System Requirements ...................................................... 37 

3.5.3. Installation ..................................................................................................................... 37 

3.5.4. Execution Instructions ................................................................................................... 37 

3.5.5. Input and Output Data Format ...................................................................................... 38 

3.5.6. Contact .......................................................................................................................... 38 

3.6. News Text Crawler and RSS Feed gatherer .......................................................................... 38 

3.6.1. Overview and Purpose .................................................................................................. 38 

3.6.2. Software Dependencies and System Requirements ...................................................... 39 

3.6.3. Installation ..................................................................................................................... 39 

3.6.4. Execution Instructions ................................................................................................... 39 

3.6.5. Input and Output Data Format ...................................................................................... 40 

3.6.6. Contact .......................................................................................................................... 41 

3.7. News Article Alignment and Downloading Tool ................................................................. 41 

3.7.1. Overview and Purpose .................................................................................................. 41 

3.7.2. Software Dependencies and System Requirements ...................................................... 42 

3.7.3. Installation ..................................................................................................................... 42 

3.7.4. Execution Instructions ................................................................................................... 42 

3.7.5. Input and Output Data Format ...................................................................................... 43 

3.7.6. Contact .......................................................................................................................... 43 

4. Conclusion ......................................................................................................................... 44 

5. References .......................................................................................................................... 45 

5.1. A Workflow-based Corpora Crawler .................................................................................... 45 

5.2. ILSP FMC tool references .................................................................................................... 45 

 

 

  



 Contract no. 248347  

 

 

D3.5 V3.0  Page 6 of 46 

 

Abbreviations 

 

Abbreviation Term/definition 

ACCURAT  
Analysis and Evaluation of Comparable Corpora for Under 

Resourced Areas of Machine Translation 

CLIR Cross Lingual Information Retrieval 

FMC Focused Monolingual Crawler 

MCC Multilingual comparable corpora 

MT Machine Translation 

RSS Rich Site Summary 

SMT  Statistical Machine Translation 

 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 7 of 46 

1. Introduction 
Important technological achievements in the Machine Translation (MT) field have significantly raised 

the output quality of contemporary MT systems. This has led to the systems being more and more 

widely adopted as core components in many translation solutions. As a result, a constantly increasing 

global demand for MT systems has been established. This in turn entails rising demand for parallel 

textual data
1
 across all possible language pairs and domains, since the performance of most MT 

systems depends on large quantities of high quality parallel data. Traditionally, parallel corpora are 

the major source from which the required parallel language resources can be automatically obtained 

by using one of several well known alignment methodologies
2
. However, parallel corpora are hard to 

find, especially for less widely spoken languages and for narrow domains, as well as expensive to 

create. 

The ACCURAT project is investigating for cost-effective and innovative ways to automatically 

produce parallel information for training MT systems and improving their overall performance. In 

particular, the project is investigating methods and techniques for extracting of parallel data from 

bilingual comparable corpora, i.e. bilingual corpora of source language-target language text pairs 

where the paired texts are not exact translations of each other but are related in some weaker way, e.g. 

by being on the same topic or about the same events.   

Comparable corpora are potentially easier to build than parallel corpora for a large variety of 

languages and for many specific thematic areas. At the same time bilingual comparable corpora are 

likely to contain parallel information required for the training of MT systems. Although bilingual 

corpora can be comparable at a variety of levels and in various aspects
3
, they are only able to improve 

MT system performance when they contain a good number of parallel textual segments. Therefore, 

ACCURAT focuses on gathering and processing bilingual comparable text corpora containing a 

significant amount of mappable textual data or, equivalently, on bilingual “mappable” corpora. The 

ACCURAT workflow (from the most abstract viewpoint) iterates through three major steps: (i) 

develop tools for comparable corpora acquisition and use those tools to collect such corpora, (ii) find 

efficient methods to extract parallel data from the collected comparable corpora and (iii) evaluate any 

possible gain in the performance of MT systems
4
 originated from the extracted parallel data. 

In respect to the first of the above three essential  steps, ACCURAT has investigated efficient 

methods and developed tools for identifying and gathering large amounts of comparable textual data 

from the web
5
, thus facilitating the building of comparable bi(multi)lingual corpora for under-

resourced languages and narrow domains. Many different and apparently heterogeneous corpus 

collection techniques were explored, developed and tested extensively. This was necessary because it 

was not known at the outset how “mappable” the corpora that different techniques deliver would be. 

Moreover, the aim of collecting multilingual comparable corpora with significant mappable sentential 

or subsentential pieces of text is inherently hard to meet. The most successful of the corpus collection 

approaches have been identified, described and specified in D3.4 Report on methods for collection of 

comparable corpora. In the present deliverable (D3.5) prototype tools based on those approaches 

have been refined and documented to a level suitable for public release. 

                                                      

1 That is, bilingual sentences, phrases, words, etc. that are translation equivalents of each other. 

2 D2.1 deliverable provides a survey of them. 

3 The concept of corpus comparability has been extensively specified and documented in the D1.1, D1.2 and D1.3 

deliverables. 

4 Both Statistical MT and Rule-Based MT systems are considered here. 

5 While they may not be directly applicable, it is straightforward to adopt and apply our the methods for building 

comparable corpora from the web to digital archives or other off-line very large textual data collections. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 8 of 46 

In this deliverable, we first discuss related studies which focus on collecting comparable corpora 

(Section 2). Next, we describe the tools that the ACCURAT project has produced, including “how to 

install and use” instructions for public users (Section 3).  



 Contract no. 248347  

 

 

D3.5 V3.0  Page 9 of 46 

 

2. Related Work 
 

Although the significance of comparable corpora has been acknowledged by the research community, 

as this is witnessed by the related literature, there are few reports on tools for collecting comparable 

corpora. 

Indeed, several publications concerning the exploitation of comparable corpora can be found in the 

related literature. Tao and Zhai (2005) presented a method for examining frequency correlations of 

words in different languages in comparable corpora in order to find mappings between words and 

achieve cross-lingual information integration. Munteanu and Marcu (2006) attempted to extract 

parallel sub-sentential fragments from comparable bilingual corpora using a signal-processing 

approach for producing training data sets for MT systems. A framework for exploiting comparable 

and parallel corpora for generating named entity translation pairs was introduced by Hassan et al. 

(2007). Finally, efforts on taking advantage of comparable corpora for improving MT in less-

resourced languages have recently started; an investigation on translation systems on eighteen 

European language pairs and preliminary SMT (Statistical Machine Translation) models with the 

purpose of discovering parallel parts within comparable corpora was presented by Eisele and Xu 

(2010), while Skadiņa et al. (2010) reported on research plans for analyzing and evaluating novel 

methods that could aid in compensating for the shortage of linguistic resources by using comparable 

corpora. 

On the other hand, the number of available publications that address the issue of building such 

corpora is very limited. Early approaches were based on readily available resources. Sheridan and 

Ballerini (1996) introduced an approach for multilingual information retrieval, applying thesaurus-

based query-expansion techniques over a collection of documents provided by the Swiss news 

agency. Braschler and Scäuble (1998) presented a corpus-based approach for building comparable 

corpora using the TREC CLIR data, while Talvensaari et al. (2007) presented a study which describes 

how a comparable corpus was built from articles by a Swedish news agency and a U.S. newspaper. 

Initial work on acquiring comparable corpora from the web was reported by Utsuro et al. (2002). 

They collected articles in Japanese and English from News web sites and attempted to align them 

based on their publication dates. Talvensaari et al. (2008) used a focused crawling system to produce 

comparable corpora in the genomics domain in English, Spanish and German. Even though our work 

follows the same methodological approach, two critical differences are: (i) less-resourced languages 

are targeted, which significantly increases the challenge of this task and (ii) a number of different 

topical domains are crawled extensively to produce the final results. Ion et al. (2010) presented a 

customizable application that could be used for building comparable corpora from Wikipedia and the 

web by merging and organizing different web crawlers. An overview on different methodologies used 

to collect small-scale corpora in nine language pairs and various comparability levels was reported by 

Skadiņa et al. (2010) and the collected corpora were investigated in order to define criteria and 

metrics of comparability. 

  



 Contract no. 248347  

 

 

D3.5 V3.0  Page 10 of 46 

 

3. Description of Tools 

3.1. A Workflow Based Corpora Crawler 

3.1.1. Overview and Purpose 

Multilingual comparable corpora (MCC) have been around for a while in the context of Machine 

Translation (MT) research, as an alternative to parallel corpora which were (and still are for certain 

pairs of languages and domains) hard to find. By comparison with parallel corpora which contain 

pairs of equivalent translation units of text (sentences or paragraphs), MCC exist with different 

degrees of comparability: weakly comparable corpora, strongly comparable corpora, quasi-

comparable corpora, very-non-comparable corpora, etc. (Skadina et al. 2010). A general definition of 

MCC that we find useful is given by (Munteanu and Marcu, 2006). They say that a (bilingual) 

comparable corpus is a set of paired documents that, while not parallel in the strict sense, are related 

and convey overlapping information. The measure of this overlapping should give the degree of the 

comparability between the two documents in a pair (for instance, a real number ranging between 0 

and 1 with 0 indicating complete divergence of topic and 1 indicating parallelism: one document is 

the translation of the other). 

We provide a tool for automatic extraction of a parallel or strongly comparable corpus. The logic of 

the application is controlled from within the FLOW EDITOR which enables the user to easily create and 

manage workflows thus having a global view of the extraction process. Note that this is not intended 

as a standalone crawler but more as a development system for data extraction applications.  

Command line tools are applications designed to be user operated via a text-only computer interface. 

There are numerous console-based applications or scripts written in interpreters such as PHP or Perl 

that provide useful processing resources for text corpora. When trying to combine tools such as these 

you must create a master application design to provide input/output management for each unit. 

Using the workflow approach we are trying to provide the means for interaction between such text-

based tools and other applications.  There are two ways to accomplish this: 

1. When using console application we give a simple regular expression driven mechanism for 

input/output control. When the flow is executed, the output of each unit is processed and an 

input for the next unit is generated. If Input/Output regular expressions are defined, these are 

applied to I/O data. 

2. When the first method is unusable, the user can create plugins in order to implement the 

needed functionality. Plugins are .NET assemblies which implement the ProcessingBlock or 

DecisionBlock interfaces.  

3.1.2. Software Dependencies and System Requirements 

The crawler is written in C# and it requires .NET Framework version 4.0. In order to be able to collect 

documents from the Internet, an active Internet connection is also required. 

3.1.3. Installation 

Other than the .NET Framework installation, this application does not require further installation. 

3.1.4. Execution Instructions 

The use of a workflow gives the means for high scalability and integration of modules written in 

different programming languages or interpreters. This system gives the advantage of organizing the 

logic of the application around processing units and decision blocks. The user can alter the global 

application behavior by adding new blocks or modifying the way the I/O data is being handled. 

Another advantage is that the independent processing modules are unloaded when no data is available 

in order to preserve computational resources. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 11 of 46 

We start by creating a basic crawling workflow.  We refer to the units that do the actual work as 

active blocks as opposed to the start and end nodes that are just visual markers. 

There are two types of active blocks: decision blocks and processing units. Every block has an 

external application (script, compiled program, etc.)/plugin associated with it that takes the data from 

the preceding block, processes it and passes the result to the next block in the chain. By clicking on 

the active blocks, the user can edit the following parameters: 

1. Name: represents the label on the block that will be displayed on the screen. 

2. Execution parameters:  

 

Figure 1: Block property editor 

 

2.1. Executable path:  path to the application that will be executed when the block is 

invoked. It can be a standalone application or an interpreter for the script. 

2.2. Command line parameters: will be passed to the application. We use special keywords 

like “$script” for the scrip filename or “$input” for the input produced by the parent 

node; 

2.3. PlugInDLL: the full path to a C# plugin DLL which implements the ProcessingBlock or 

DecisionBlock interfaces (included in the distribution of this crawler); 

2.4. Script path: should be used only with interpreted languages and will be passed as a 

command line argument. 

3. Regular expressions (applied only in case of external applications  invoked by the respective 

block): 

3.1. InputRegex: This will be applied to the text input before it is passed to the external 

application (script, compiled application, etc.); it must have capturing parentheses 

because only the captured text is actually passed on; 

3.2. OuputRegex: Used to preprocess the output of the external application before it is passed 

to the next block 

3.3. ConditionRegex: Used only on decision blocks. Produces “true” if the output matches 

the regular expression and “false” otherwise.  

After the workflow is defined, the user may save it and execute it from the toolbar above the 

workflow creation area. Depending on the selected plugins, a dialog will open that will ask for 

information such as the destination folder. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 12 of 46 

 

Figure 2: The typical crawling workflow (if we are sure that all results are valid, we may do without the 

decision block) 

The workflow-based crawler is shipped with plugins and workflows (saved in XML files) for 

crawling Wikipedia the Europarl sites. 

3.1.5. Input and Output Date Format 

The I/O data formats are not fixed. These are application/plugin dependent but, usually, the “crawl” 

block will produce HTML documents and the “results processing” block will extract the text out of 

these documents. For an example, please load and run the “europarl.xml” crawling workflow shipped 

with the crawler. 

3.1.6. Creating Blocks 

Blocks are .NET assemblies that contain a “MainClass” (name is important) and implement one of the 

two interfaces in “agora.dll”.  

There are two types of blocks that can be written: processing blocks and decision blocks. All blocks 

share memory, but this will be explained later. 

Processing blocks are the actual workers. They must implement the “ProcessingBlock” interface and 

write the logic for the “ProcessData” method. The output is of type “object” and can be anything 

from NULL (presuming the current block uses the shared memory to communicate with the next 

block) to lists of objects (eg. “List<string>”). In one of the crawlers provided as an example the 

“SearchBlock” returns a list of pages that need to be downloaded as a “List<string>” object. The 

“ResultsProcessing” block takes this list and starts downloading the pages in the given folder. The 

folder location is transmitted through the shared memory. To be more precise we will explain the 

following lines of the code: 

 

1 #region ProcessingBlock Members 

2 object ProcessingBlock.ProcessData(object data, 

Agora.Builder.System.BaseApplication MyApplication) { 

3 string[] urls = (string[])data; 

4 String BasePath = MyApplication.Memory[0].ToString(); 

5 return null; 

6 } 

7 #endregion 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 13 of 46 

 

Parameters passed to the “ProcessData” method (line 2) are: 

1. The results from the previous processing block (object data)  

2. The context of the application (BaseApplication MyApplication) which is used to 

access the shared memory (MyApplication.Memory[]). 

The list of URLs is obtained by a simple cast of the data object (line 3). There is no restriction 

regarding the output of one block other than the fact that it must be compatible with the next block. In 

this case the two blocks are specially designed to work together so the “ResultProcessing” block 

knows exactly what type of data is being handed. 

The location where this block should store the results (BasePath) is given trough the shared memory 

system (line 4). Each location in the shared memory is associated with only one plugin. The access 

can be done as follows: 

MyApplication.GetMyMemory() – read only 

 or 

MyApplication.Memory[pluginId] – read/write 

A plugin can get its pluginId from the application context (MyApplication.CurrentPluginID). 

Decision blocks allow shaping the flow of data. They implement the “DecisionBlock” interface and 

must write logic for the following two methods: 

bool DecisionBlock.EvaluateCondition(object data, 

Agora.Builder.System.BaseApplication  

MyApplication) 

And  

object DecisionBlock.GetData(object data, 

Agora.Builder.System.BaseApplication  

MyApplication)  

The parameters passed on to these methods have the same meaning and content as explained for the 

“ProcessingBlocks”. 

The “EvaluateCondition” method returns “false” or “true” and gives the direction of the data flow 

(left - false or right - true). The “GetData” method is identical to “ProcessData” (Processing blocks). 

The simplest implementation is a pass through: return data. 

3.1.7. Contact 

For further information and technical support installing and/or running this tool, please email to 

Tiberiu Boroș: tibi@racai.ro. 

3.2. ILSP Focused Monolingual Crawler (FMC) 

3.2.1. Overview and Purpose 

The ILSP Focused Monolingual Crawler (FMC) tool is used to collect narrow domain 

bi(multi)lingual comparable corpora from the web. It does so by making a separate crawl for each 

language specified and by retrieving each time only web pages that are relevant to a pre-defined 

narrow domain or topic. The comparability of the bi(multi)lingual documents retrieved is achieved by 

ensuring that, for each language specified, the FMC is made to return web documents that are all close 

to the same topic. 

Given a language pair(or a set of languages)
 
 and a topic, the user has to first create a list of topic-

specific single- or multi-word terms as well as a simple list of URLs being considered highly 

relevant to the topic in question. These data (input to the FMC) have to be prepared for each language. 

mailto:tibi@racai.ro


 Contract no. 248347  

 

 

D3.5 V3.0  Page 14 of 46 

The list of (generally) multi-word expressions related to a specific topic can be created either 

manually, possibly with the aid of some available online resources (e.g. Eurovoc
6
) or can be 

automatically extracted from small topic-specific corpora using tf-idf and term extraction algorithms. 

The list of topic-related URLs, that the FMC treats as seed URLs, can be constructed semi-

automatically (using directories from known search engines, e.g. Yahoo, Google, dmoz), or 

automatically. One possible way to automate the construction of the URLs list is to use BootCaT’s  

(Baroni et al. 2004) tuple generation algorithm, as follows: first generate a number of n-topic-terms 

combinations, and then Google search them and keep the top 5 or 10 URL results from each search as 

candidates for the final seed URL list.  

Once topic definition terms and seed URLs list have been generated, the user may then optionally 

choose to configure the crawler engine. That is, the user has the option to adjust various crawler 

settings prior to crawling start. For example, the user can set file types to download (e.g. PDF, doc, 

and xls), domain filtering options (using regular expressions), self-terminating conditions (size or time 

limits), crawling politeness parameters, etc.  

Having concluded with the above steps, the user should next run FMC once per each language. 

In short, the main steps the crawler executes are illustrated in Figure 3. More details on the 

underlying FMC workflow are given in the D3.4 deliverable. 

 

Figure 3 FMC crawler workflow. 

3.2.2. Software Dependencies and System Requirements 

Since the FMC is using the Bixo
7
 open-source web mining toolkit, the software dependencies are 

shared between the Bixo and FMC projects. All software dependencies for the FMC are bundled with 

the main executable of the crawler. The final tool is a Java compiled executable that does not require 

any specific platform to operate. Any system that runs a Java Runtime Environment 1.6 or above can 

handle the FMC executable. 

However, the FMC facilitates the Hadoop
8
 clustering libraries in order to be able to run in distributed 

computing environments. These libraries contain a number of UNIX operations that a Windows 

system will not support by default. 

                                                      
6
 the EU's multilingual thesaurus, http://eurovoc.europa.eu/ 

7 http://bixo.101tec.com/ 

8 http://hadoop.apache.org/ 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 15 of 46 

In order to provide support for such operations on a Windows system, Cygwin
9
 has to be installed. 

The default installation procedure is enough for providing the required support. 

Finally, after Cygwin is installed, the installation path must be added to the PATH environment 

variable of the Windows system (on a default installation this path will be “C:\Cygwin\bin”). 

To add “C:\Cygwin\bin” to the PATH environment variable, simply run the following command from 

a Windows console: 

 set PATH = %PATH%;C:\Cygwin\bin 

Similarly, there are no specific hardware requirements beyond those needed for running the JRE. We 

have tested the tool on both simple workstation and server environments with the following setups: 

Table 1 FMC system requirements 

 Windows Workstation Linux Server 

Operating system Microsoft Windows XP(sp3) Fedora 13.0 

Memory 4GB 8GB 

Hard disk space 2 x 250GB RAID 5 setup (~1TB) 

CPU INTEL Core 2 @3GHz INTEL Xeon @ 3GHz (quad 

core) 

Proper cluster setup and testing could not be completed due to lack of adequate hardware resources. 

However, a small testing Hadoop
10

 cluster (up to 3 workstations) was configured and tested with the 

FMC executing successfully. 

Due to the nature of the tool, although it will execute successfully on almost any setup, it is important 

to have a dedicated machine in order to achieve reasonable performance. On a common crawl run 

(usually assigning 16-32 processing threads on each machine) it will take approximately 24 hours to 

fetch an average of 20k html pages. These will be stored in the file system and will require (along 

with their exported metadata files) about 10 gigabytes of hard disk storage. Therefore, the actual 

storage requirements depend on the crawl job specifications and schedule.  

3.2.3. Installation 

There is no real installation procedure for the FMC to work. One should only verify that the FMC 

executable is located somewhere on the system where the user has “execute” rights. From there on, 

the user will select the location where the crawling database will be hosted and therefore the 

executable should be able to access and write in that location (since this is a Java application, all 

rights are inherited from the user running it, therefore if the user has read/write rights on the specific 

location, so does the FMC). 

3.2.4. Execution Instructions 

Currently, there are four modes for running the FMC, which can be displayed by simply executing the 

JAR file with no arguments: 

 java –jar ilsp-fmc-bixo.jar 

This will return the following output: 

usage: ilsp-fmc-bixo.jar 

-a,--agentname        user agent name 

-c,--crawlduration    target crawl duration in minutes 

                                                      
9 http://www.cygwin.com/ 

10 http://hadoop.apache.org/ 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 16 of 46 

-cfg,--config         XML file with configuration for the crawler. 

-d,--domain           domain to crawl (e.g. cnn.com) or path to file 

with domains to crawl. Use for crawling ONLY  

inside specific domain(s) 

-dbg,--debug          debug logging 

-f,--force            Force to start new crawl. Caution: This will 

                      remove any previous crawl data (if they exist). 

-h,--help             Help 

-k,--keepboiler       Annotate boilerplate content in parsed text 

-l,--loggingAppender  set logging appender (console, DRFA) 

-lang,--language      Target language. If more than one, separate with 

                      ';', i.e. en;el 

-len,--length         Minimum number of tokens per text block 

-n,--numloops         number of fetch/update loops 

-o,--outputdir        output directory 

-of,--outputfile      output list file 

-op,--operation       operation to conduct: 

                      crawlandexport|crawl|export|config 

-t,--threads          maximum number of fetcher threads to use 

-tc,--topic           Topic definition 

-te,--textexport      Export plain text files 

-u,--urls             file with list of urls to crawl  

Using a particular operation argument will trigger the appropriate mode. 

3.2.4.1. Crawling Mode 

The first mode is the main crawling phase and can be activated by issuing the following command: 

 java –jar ilsp-fmc-bixo.jar –op crawl 

The arguments used in this mode are explained in detail in the table that follows (Table 2). 

Table 2 Command line input arguments when FMC runs in crawl mode. 

Argument Description 

-a, --agent-name The agent name is used to provide some identification information to the 

web sites that will be visited by the crawler. This is a mandatory argument. 

Valid values can be a name or title of an organization, an email address etc.  

i.e. “-a ilsp”, “-a nmastr@ilsp.gr” 

-c, --crawlduration The time in minutes the crawler should run. This is an alternative 

terminating condition to the number of loops argument (--numloops) (“-c” 

or “-n” must be used). It should be noted that the crawler will not terminate 

at exactly the specified time; rather it will wait for the current crawling loop 

to end and will not initiate a new one. 

e.g. “-c 3000”  

-cfg, --config Optional argument for providing a custom configuration UTF-8 encoded file 

(in XML format) for the crawler. The default configuration file can be 

supplied by the crawler’s config mode which will be presented later. 

e.g. “-cfg /mypath/config.xml” 

-d, --domain Optional argument for crawling only a specific web domain. This is an 

alternative to supplying a seed URL list (--urls). Valid values are the web 

mailto:nmastr@ilsp.gr


 Contract no. 248347  

 

 

D3.5 V3.0  Page 17 of 46 

Argument Description 

domain without the prefixes (cnn.com) or a file with one entry per line. 

e.g. “-d cnn.com”  

(will only crawl inside the cnn.com web domain) 

e.g. “-d /mypath/domains.txt” 

(will only crawl inside web domains mentioned in domains.txt) 

-dbg, --debug Optional boolean argument to enable debug mode. If enabled, crawler will 

output a lot more info while running, should only be used for debugging 

purposes. This argument does not take any values (“true” if used, “false” 

otherwise). 

-f, --force Each crawl job creates a file and folder structure within a specified folder. If 

this folder already exists when a crawl starts, this optional boolean argument 

can be used to reset the file system. This should be used with caution, its 

effect is irreversible. This argument does not take any values (“true” if used, 

“false” otherwise).  

Attention: If a crawl job terminated due to an error or any other unplanned 

way, the file structure will be incomplete and therefore resuming will be 

impossible. In this case, the –f argument must be used to reset the file 

system. Alternatively, the two last created folders in the crawl storing file 

system have to be manually deleted (folders are named sequentially so that 

it is easy to identify which ones to remove). 

-h, --help This argument has exactly the same effect as running the crawl mode with 

no arguments (java -jar ilsp-fmc-bixo.jar crawl). 

-k, --keepboiler Optional boolean argument to conserve content that was marked as 

boilerplate
11

 in the fetched web pages. If enabled, the exported XML files 

will contain text marked as boilerplate. This argument does not take any 

values (“true” if used, “false” otherwise). 

-lang, --language Mandatory argument for specifying the target language(s) of the fetched 

web pages. Valid values are the ISO-639-1 codes separated by ‘;’ when 

more than one. 

e.g. “-lang el”, “-lang en;lt;lv” 

-n, --numloops Number of loops before terminating the crawler. A loop is defined as the 

process of choosing a batch of URLs from the available list, fetching, 

parsing, extracting links, classifying and storing in the file system. This is an 

alternative terminating condition to the crawl duration argument (--

crawlduration)(“-c” or “-n” must be used). Valid values are simple integer 

numbers. 

e.g. “-n 10”, “-n 5300” 

-o, --outputdir Mandatory argument for specifying the exact location where all crawl-

related files will be stored. If the specified folder does not exist, it will be 

created. If it exists, the crawler will attempt to resume crawling unless the “-

f” argument is used in which case, the folder will be deleted and recreated. 

Valid values are strings specifying the desired location. 

e.g. “-o /var/crawloutput/crawldb”, 

“-o C:\crawloutput\crawldb” 

                                                      
11 HTML page content with little or no relevance to the web page’s topic (i.e. advertisements, disclaimers, navigation links) 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 18 of 46 

Argument Description 

-t, --threads Optional argument for specifying the number of processing threads to be 

used for fetching web pages. This should be specified according to hardware 

specifications. Default value is 10 threads. 

e.g. “-t 32” 

-tc, --topic Optional argument for specifying the location and name of the topic 

definition file to be used by the classifier. If not supplied, the crawler will 

run in “un-focused” mode, simply downloading everything it finds. Valid 

values are strings specifying the topic definition file. 

e.g. “-tc /var/crawlinput/topicdef_EN.txt”,  

“-tc C:\crawlinput\topicdef_RO.txt” 

-u, --urls Location and name of the seed URL file. This is an alternative to the domain 

argument (-d)(“-d” or “-u” must be used). In contrast with supplying 

domains, URLs in the seed URL file will be used only as starting points and 

pose no crawling restrictions. Valid values are strings specifying the seed 

URL file. 

e.g. “-tc /var/crawlinput/seed_HR.txt”, 

“-tc C:\crawlinput\seed_EL.txt” 

A few running examples: 

 Run a 10-minute crawl as ilsp, with 32 threads, preserving boilerplate information and fetch 

Greek web pages using the seed.txt and topic.txt as seed URL and topic definition files. 

Output must be stored in the crawldb folder. 

java –jar ilsp-fmc-bixo.jar –op crawl –a ilsp –c 10 –k –lang el –t 32 

–o /var/crawlruns/RenEner/EL/crawldb  

–tc /var/crawlruns/RenEner/EL/topic.txt  

–u /var/crawlruns/RenEner/EL/seed.txt 

 Run a two-day crawl as ilsp, with 5 threads, fetching English web pages from the cnn.com 

web domain with no specific topic and saving results in crawldb. 

java –jar ilsp-fmc-bixo.jar –op crawl –a ilsp –c 2880 –lang en –t 5 

-d cnn.com 

–o /var/crawlruns/cnn/EN/crawldb  

 Run a 10-loop crawl as user@email.com, with 1 thread, fetching Latvian and Lithuanian web 

pages using seed.txt and topic.txt as seed and topic definitions and using a custom 

configuration file. 

java –jar ilsp-fmc-bixo.jar –op crawl –a user@email.com –n 10 –lang lt;lv –

t 32  

–cfg /var/crawlruns/LT-LV/myconfig.xml  

–o /var/crawlruns/LT-LV/crawldb  

–tc /var/crawlruns/LT-LV/topic.txt  

–u /var/crawlruns/LT-LV/seed.txt 

It should be stressed that by using the –d option without specifying a term definition file makes FMC 

to behave as a different tool that let us easily collect parallel data from a given multilingual parallel 

site or sites (provided that language selection on these sites is done by means of specific links and not 

through user interaction). 

mailto:user@email.com


 Contract no. 248347  

 

 

D3.5 V3.0  Page 19 of 46 

3.2.4.2. Export Mode 

The second mode for running FMC is the export mode. This mode is used for exporting the fetched 

web pages and their metadata and is used by issuing: 

 java –jar ilsp-fmc-bixo.jar –op export 

The following table details the arguments used in this mode. 

Table 3 Command line input arguments when FMC runs in export mode. 

Argument Description 

-h, --help This argument has exactly the same effect as executing the jar with no 

arguments (java -jar ilsp-fmc-bixo.jar). 

-o, --outputdir Mandatory argument for specifying the location where the crawler saved 

files during the crawl phase. Should be the same as the value given to the 

“-o” argument when running in crawl mode. 

e.g. “-o /var/crawloutput/crawldb”, 

“-o C:\crawloutput\crawldb” 

-lang, --language Mandatory argument for specifying the target language of the fetched web 

pages. This will be used to annotate each paragraph of each exported file as 

being in the target language or not. Valid values are ISO-639-1 language 

codes. 

e.g. “-lang el” 

-len, --length Optional argument for specifying a minimum number of tokens per text 

block. Any text block with fewer tokens than the specified value, will be 

annotated  with a “crawlinfo ooi-length tag” in the final XML file. Valid 

values are integer numbers. 

e.g. “-len 10” 

-tc, --topic Optional argument for specifying the name and path of the topic definition 

file that was used in the crawl mode. If supplied, each text block in the 

final XML file will be annotated with a “topic” attribute.. Valid values are 

strings with the full path and name of the topic definition file. 

e.g. “-tc /var/crawlinput/topic.txt”, 

“-tc C:\crawlinput\topic.txt” 

-of,--outputfile Optional argument for specifying the name and path of a file to write a 

simple file listing of the exported xml files. Valid values are strings with 

the full path and name of a file to write. 

e.g. “-of /var/crawloutput/exports.txt”, 

“-of C:\crawloutput\exports.txt” 

-te,--textexport Optional argument, which when present, causes the collected web 

documents to be exported in text format (UTF-8 encoding) in addition to 

HTML format. If not present, only HTML docs are exported. 

3.2.4.3. Crawl and Export Mode 

Alternatively, the crawlandexport mode combines the functionality of the crawl and export modes 

by automatically issuing the exporter after the crawl is terminated. To use, simply issue the command: 

 java –jar ilsp-fmc-bixo.jar –op crawlandexport 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 20 of 46 

and use the arguments as described in the crawl and export mode. In both export and crawlandexport 

modes, the exported file collection is stored in a subfolder named “xml” inside the path designated by 

the “-o, --outputdir” argument. An example of using the crawlandexport mode: 

java –jar ilsp-fmc-bixo.jar –op crawlandexport  

–a ilsp  

–c 10  

–k  

–lang el  

–t 32  

–o /var/crawlruns/RenEner/EL/crawldb  

–tc /var/crawlruns/RenEner/EL/topic.txt 

-te 

-len 10 

–u /var/crawlruns/RenEner/EL/seed.txt 

3.2.4.4. Config Mode 

Finally, the crawler operates in config mode, in which a built-in utility is being invoked for supplying 

the user with the crawler’s default configuration file. With this file, one can easily create a custom 

configuration which one can then use in crawl or crawlandexport modes (as an argument to the “-cfg” 

parameter). To use this utility, simply issue the following command: 

  java –jar ilsp-fmc-bixo.jar -op config -of <mypath> 

where “<mypath>” is the full path and name of the file in which the default configuration parameters 

will be saved for the user to modify them as necessary. For instance, if we wish to get the 

configuration file in “C:\temp\tempconfig.xml”, then we must execute the command: 

 java –jar ilsp-fmc-bixo.jar –op config -of C:\temp\tempconfig.xml 

3.2.5. Input and Output Data Format 

As mentioned above, the input tothe FMC consists of the topic definition file, seed URL list and 

optionally an XML configuration file. The topic definition is a simple text file using UTF-8 encoding 

containing one triplet per line. Each triplet corresponds to a term, its weight and its domain or 

subdomain. 

 <weight>: <term>=<domain> 

For example, in the Renewable Energy domain, an excerpt of the topic definition file is shown below: 

100: renewable energy=RenewableEN 

100: natural resources=RenewableEN 

100: natural processes=RenewableEN 

100: biogas=RenewableEN 

100: renewable power generators=RenewableEN 

... 

It is important to note that each term must contain only alphanumeric characters for the parser to be 

able to handle it correctly. The seed URL file is again a simple text file UTF-8 encoded containing 

one URL per line. A sample seed URL file for the Renewable Energy domain is the following: 

http://alternative-energy-resources.net/ 

http://ebrdrenewables.com/sites/renew/biofuels.aspx 

http://en.wikipedia.org/wiki/Portal:Renewable_energy/Selected_article 

http://en.wikipedia.org/wiki/Renewable_energy 

http://green.wikia.com/wiki/Renewable_Energy 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 21 of 46 

There is no limit to the number of terms or URLs that these files can contain, however, a very large 

number of terms in the topic definition file will have an impact on the classifier’s performance. 

The configuration file must be based on the default XML provided by FMC’s config mode. It 

provides mainly technical configuration options for the crawling mode of FMC and specifically issues 

that have to do with crawling politeness (i.e. time intervals between revisiting a web page from the 

same web domain, number of simultaneous threads running on a specific web domain), buffer sizes, 

and timeouts as well as some options for the text classification. The default XML used by FMC is 

illustrated below: 

<?xml version="1.0" encoding="UTF-8"?> 

<configuration> 

 <agent> 

  <email>yourmail@mail.com</email> 

  <web_address>www.youraddress.com</web_address> 

 </agent> 

 <classifier> 

  <min_content_terms> 

   <value>5</value> 

   <description>Minimum number of terms that must exist in 

clean content of each web page in order to be stored.</description> 

  </min_content_terms> 

  <min_unique_content_terms> 

   <value>3</value> 

<description>Minimum unique terms that must exist in clean 

content</description> 

  </min_unique_content_terms> 

  <max_depth> 

   <value>2</value> 

<description>Maximum depth to crawl before abandoning a specific path. 

Depth is increased every time a link is extracted from a non-relevant web 

page.</description> 

  </max_depth> 

 </classifier> 

 <fetcher> 

  <fetch_buffer_size> 

   <description>Maximum number of urls to fetch per 

run</description> 

   <value>256</value> 

  </fetch_buffer_size> 

  <socket_timeout> 

   <value>10000</value> 

   <description>Socket timeout in milliseconds(per 

URL)</description> 

  </socket_timeout> 

  <connection_timeout> 

   <value>10000</value> 

   <description>Connection timeout in milliseconds(per 

URL)</description> 

  </connection_timeout> 

  <max_retry_count> 

   <value>2</value> 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 22 of 46 

<description>Maximum number of attempts to fetch a Web page before giving 

up</description> 

  </max_retry_count> 

  <min_response_rate> 

   <value>0</value> 

<description>Minimum bytes-per-seconds for fetching a web 

page</description> 

  </min_response_rate> 

  <valid_mime_types> 

   <mime_type value="text/html" /> 

   <mime_type value="text/plain" /> 

   <mime_type value="application/xhtml+xml" /> 

   <description>Accepted mime types</description> 

  </valid_mime_types> 

  <crawl_delay> 

   <value>1500</value> 

   <description>Delay in milliseconds between 

requests</description> 

  </crawl_delay> 

  <max_content_size> 

   <value>531072</value> 

<description>Maximum content size (bytes) for downloading a web 

page</description> 

  </max_content_size> 

  <max_requests_per_run> 

   <value>50</value> 

<description>Maximum fetch set size per run (Sets are made by URLs from the 

same host)</description> 

  </max_requests_per_run> 

  <max_requests_per_host_per_run> 

   <value>50</value> 

   <description>Maximum URLs from a specific host per 

run</description> 

  </max_requests_per_host_per_run> 

  <max_connections_per_host> 

   <value>32</value> 

   <description>Maximum number of fetching threads for each 

host</description> 

  </max_connections_per_host>   

  <max_fetched_per_host> 

   <value>1000</value> 

   <description>Maximum web pages to fetch per 

host</description> 

  </max_fetched_per_host> 

  <max_redirects> 

   <value>5</value> 

   <descriptions>Maximum number of redirects</descriptions> 

  </max_redirects> 

  <request_timeout> 

   <value>600000</value> 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 23 of 46 

<description>Maximum time to wait for Fetcher to get all URLs in a 

run</description> 

  </request_timeout> 

 </fetcher>  

</configuration> 

The FMC output consists of the collected web documents in both HTML and text format (UTF-8 

encoding) as well as their metadata. The metadata are stored in XML files using a cesDOC format 

that can be validated against the available XCES
12

 standard schemas. A sample XML file is provided 

below: 

<?xml version='1.0' encoding='UTF-8'?> 

<cesDoc version="0.4" xmlns="http://www.xces.org/schema/2003" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 <cesHeader version="0.4"> 

  <fileDesc> 

   <titleStmt> 

    <title>Japan quake among worst ever recorded - 

Chicago Breaking News</title> 

    <respStmt> 

     <resp> 

      <type>Crawling and normalization</type> 

      <name>ILSP</name> 

     </resp> 

    </respStmt> 

   </titleStmt> 

   <publicationStmt> 

    <distributor>ACCURAT project</distributor> 

    <eAddress type="web">http://www.accurat-

project.eu/</eAddress> 

    <availability>Under review</availability> 

    <pubDate>2012</pubDate> 

   </publicationStmt> 

   <sourceDesc> 

    <biblStruct> 

     <monogr> 

      <title>Japan quake among worst ever 

recorded - Chicago Breaking News</title> 

      <author></author> 

      <imprint> 

       <format>text/html</format> 

       <publisher></publisher> 

       <pubDate></pubDate> 

      

 <eAddress>http://articles.chicagobreakingnews.com/2011-03-

11/news/28682007_1_japan-quake-tsunami-indonesia</eAddress> 

      </imprint> 

     </monogr> 

                                                      
12 http://www.xces.org/ 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 24 of 46 

    </biblStruct> 

   </sourceDesc> 

  </fileDesc> 

  <profileDesc> 

   <langUsage> 

    <language iso639="en"/> 

   </langUsage> 

   <textClass> 

    <keywords> 

     <keyTerm>news</keyTerm> 

    </keywords> 

    <domain></domain> 

    <subdomain>DisastersEN</subdomain> 

    <subject/> 

   </textClass> 

   <annotations> 

    <annotation>/D:/PROGRAMS/eclipse/workspace/ilsp-

fmc-bixo/crawlresults/test/xml/1.html</annotation> 

   </annotations> 

  </profileDesc> 

 </cesHeader> 

 <text> 

  <body> 

   <p id="p1" crawlinfo="boilerplate">You Are Here: Home > 

Collections</p> 

   <p id="p2" crawlinfo="ooi-length" type="title">Japan 

quake among worst ever recorded</p> 

   <p id="p3" crawlinfo="ooi-length">By Caroline Kyungae 

Smith | Tribune reporter</p> 

   <p id="p4" crawlinfo="ooi-length">March 11, 2011</p> 

   <p id="p5" topic=" quake; earthquake; japan; 

magnitude">The quake that hit Japan was a magnitude 8.9, the biggest 

earthquake to hit the country since officials began keeping records in the 

late 1800s, and one of the biggest ever recorded in the world, according to 

the U.S. Geological Survey.</p> 

   <p id="p6" topic=" depth; quake; Tokyo">The quake struck 

at a depth of six miles, about 80 miles off the eastern coast, the agency 

said. The area is 240 miles northeast of Tokyo.</p> 

   <p id="p7" topic=" tsunami; japan; tsunami">A tsunami 

warning was extended to a number of Pacific, Southeast Asian and Latin 

American nations, including Japan, Russia, Indonesia, New Zealand and 

Chile. In the Philippines, authorities ordered an evacuation of coastal 

communities.</p> 

   <p id="p8" topic=" quake; earthquake">“Japan’s earthquake 

will be considered a great quake,” said Dale Grant, a geophysicist with the 

Geological Survey in Golden, Colo.</p> 

   <p id="p9" topic=" quake">Damage from such a quake can 

span hundreds to thousands of miles.</p> 

   <p id="p10" crawlinfo="ooi-lang">A few days earlier, 

Japan was hit with a 7.2 earthquake. “A 7.2 quake has 80 or 90 times less 

energy than an 8.9 quake,” Grant said.</p> 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 25 of 46 

   <p id="p11" topic=" aftershocks; earthquake; 

aftershocks">As of 3 a.m. Chicago time, there were at least 12 aftershocks 

following the earthquake, with the greatest aftershocks measuring 7.1 and 

6.8, Grant said.</p> 

   <p id="p12" crawlinfo="ooi-length">“This is what we’d 

expect from an 8.9 earthquake.”</p> 

   <p id="p13" topic=" tsunami; quake; tsunami">The greater 

concern is the tsunami triggered by the quake, he said. “Tsunamis can 

travel up to 450 miles per hour,” he said.</p> 

   <p id="p14">“Warnings have been issued for the Hawaiian 

Islands,” he said. “We’ll probably see an impact.”</p> 

   <p id="p15" topic=" earthquake">The biggest earthquakes 

in recent history occurred last year in Chile at 8.8 and in 2004 in 

Indonesia at 9.1, Grant said.</p> 

   <p id="p16" 

crawlinfo="boilerplate">cxsmith@tribune.com</p> 

   <p id="p17" crawlinfo="boilerplate">Advertisement</p> 

   <p id="p18" crawlinfo="boilerplate">RELATED ARTICLES</p> 

   <p id="p19" crawlinfo="boilerplate" 

type="listitem">Chicagoans struggle for news from Japan</p> 

   <p id="p20" crawlinfo="boilerplate" type="listitem">March 

11, 2011</p> 

   <p id="p21" crawlinfo="boilerplate" 

type="listitem">Japanese immigrants pray for quake victims</p> 

   <p id="p22" crawlinfo="boilerplate" type="listitem">March 

13, 2011</p> 

   <p id="p23" crawlinfo="boilerplate" 

type="listitem">Vacation turns to evacuation in Hawaii</p> 

   <p id="p24" crawlinfo="boilerplate" type="listitem">March 

11, 2011</p> 

   <p id="p25" crawlinfo="boilerplate">Terms of Service</p> 

   <p id="p26" crawlinfo="boilerplate">Privacy Policy</p> 

   <p id="p27" crawlinfo="boilerplate">Index by Date</p> 

   <p id="p28" crawlinfo="boilerplate">Index by Keyword</p> 

   <p id="p29" crawlinfo="boilerplate">A Tribune Newspaper 

website</p> 

  </body> 

 </text> 

</cesDoc> 

Documentation for the elements in the XCES standard can be obtained through the XCES web site. A 

few notes on the additional elements used by FMC: 

 The profileDesc group is used for providing information regarding the language of the text 

found in this web page in ISO-639-1 format, the keywords of the web page, the domain or 

subdomain it belongs to and the location of the file. 

 The fileDesc group is used for storing the title of the web page, its original format and its 

URL. 

 Paragraph elements (<p>) may contain one or more of the following attributes: 

o crawlinfo with possible values: “boilerplate”, meaning that the paragraph has been 

considered boilerplate; “ooi-length”, denoting that this paragraph is so short that 

either it is not useful, or it can confuse the language identifier; and “ooi-lang”, 

denoting that the paragraph is not in the targeted language. 

o type with possible values: “title”, “heading” and “listitem”. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 26 of 46 

o topic with a string value storing all terms from the topic definition detected in this 

paragraph 

3.2.6. FMC Complementary tools 

This subsection briefly documents two additional tools that have been found useful in the FMC-based 

process of building bilingual domain-specific comparable corpora from the web. Namely, these tools 

are (i) an FMC system packed for bilingual focused crawling and (ii) an FMC output filter that helps 

cleaning up the bilingual narrow domain corpora, collected by FMC, from document pairs that appear 

to be very weakly comparable. 

3.2.6.1. WFMC – an FMC system packed for bilingual focused crawling 

The WFMC tool is in fact a wrapper of FMC that can be used for collecting bilingual web documents 

from given bi(multi)lingual web sites. It configures FMC to crawl only within user-specified web 

domain(s) and launches two FMC crawls, one for each language of a user-defined language pair. It 

returns two separate sets of documents, one set per language. The comparability degree of the 

returned corpora strongly depends on the comparability/parallelism of the the given web domain(s).  

Both WFMC and FMC tools have common software dependencies, system requirements, installation 

instructions, as well as input and output data format. WFMC execution instructions are simpler. The 

syntax for running WFMC is the following: 

java -jar ilsp-fmc-bilingual.jar -a agentname -c crawlduration -d domain -

tc1 topic1 -tc2 topic2 -o outputdir -t threads -lang1 language1 -lang2 

language2 -te –k 

where WFMC command arguments are described in the following table (Table 4). 

Table 4 Command line input arguments for running WFMC tool. 

Argument Description 

-a, --agent-name The agent name is used to provide some identification information to the 

web sites that will be visited by the crawler. This is a mandatory argument. 

Valid values can be a name or title of an organization, an email address etc.  

i.e. “-a ilsp”, “-a nmastr@ilsp.gr” 

-c, --crawlduration The time in minutes the crawler should run for each language. 

e.g. “-c 2880”  

-d, --domain Full path of a txt file containing bilingual web domain(s) (one domain per 

textline), such as www.cnn.com  

-tc1, --topic1 Full path of topic definition file for the first language (more info in 

subsection 3.2.5 above).  

e.g. “-tc1 /var/crawlinput/topicdef_EN.txt” 

-tc2, --topic2 Full path of topic definition file for the second language (more info in 

subsection 3.2.5 above).  

e.g. “-tc2 /var/crawlinput/topicdef_EL.txt” 

-o, --outputdir Full path of the folder to write results (further down to this folder two 

separate subfolders will be created, one for each language). Valid values are 

strings specifying the desired location. 

e.g. “-o /var/crawloutput/crawldb”, 

“-o C:\crawloutput\crawldb” 

-t, --threads Optional argument for specifying the number of processing threads to be 

used for fetching web pages. This should be specified according to hardware 

specifications. Default value is 10 threads. 

mailto:nmastr@ilsp.gr
http://www.cnn.com/


 Contract no. 248347  

 

 

D3.5 V3.0  Page 27 of 46 

Argument Description 

e.g. “-t 32” 

-lang1, --language1 Language identifier (mandatory argument) for specifying the first target 

language of the web pages to be fetched. Valid values are the ISO-639-1 

codes. 

e.g. “-lang lv” 

-lang2, --language2 Language identifier (mandatory argument) for specifying the second target 

language of the web pages to be fetched. Valid values are the ISO-639-1 

codes. 

e.g. “-lang ro” 

-te,--textexport Optional boolean argument that does not take any values (“true” if present, 

“false” otherwise). When argument is present, causes the collected web 

documents to be exported in text format (UTF-8 encoding) in addition to 

HTML format. If not present, only HTML docs are exported. 

-k, --keepboiler Optional boolean argument to save boilerplate information (found in the 

fetched web pages) to the XML metadata output files. If enabled, the 

exported XML files will contain text marked as boilerplate. This argument 

does not take any values (“true” if used, “false” otherwise). 

A sample usage of WFMC follows: 

java -jar ilsp-fmc-bilingual.jar -a ilsp 

-c 1 

-d data/domains.txt 

-tc1 data/topic1.txt 

-tc2 data/topic2.txt 

-o crawlresults/lv-el_bilingualcrawling 

-t 4 

-lang1 lv 

-lang2 el 

-te 

–k 

 

The above sample command calls FMC twice for bilingual crawling as follows: 

 use ilsp as agent name 

 crawl 1 min for Latvian docs and 1 min for Greek docs 

 confine crawl in web domains contained in data/domains.txt file 

 get topic specific terms for Latvian language from data/topic1.txt 

 get topic specific terms for Greek language from data/topic2.txt 

 output collected docs to crawlresults/lv-el_bilingualcrawling folder (lv docs will be 

saved to crawlresults/lv-el_bilingualcrawling/lv and el docs to crawlresults/lv-

el_bilingualcrawling/el) 

 use 4 threads for each crawl 

 use Latvian as first language 

 use Greek as second language 

 return collected docs in txt format (UTF-8 encoding) in addition to HTML format 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 28 of 46 

 preserve boilerplate information found in the fetched web pages by saving it to the XML 

metadata output files. 

3.2.6.2. PreDAF – an FMC output filter 

In cases where the domain specific comparable corpora harvested from the web are large enough, 

there is a special need for introducing a fast and computationally cheap way to filter out (preferably) 

all least comparable bilingual document pairs. In this manner the comparability degree of the corpora 

collected by FMC could be increased, the search scope of the corpora comparability evaluation tools 

(WP1) and of the multi-level alignment tools (WP2) would be reduced, hence significant (corpora) 

processing time savings would be achieved. 

For this purpose, the Pre-Document-Alignment Filter (PreDAF) has been developed in the form of a 

post-crawling step. The filter processes bilingual comparable corpora (actually their metadata) 

collected (and generated) by FMC or WFMC and runs independently of those two tools. The output of 

the filter is a list of document pairs that are likely to be comparable based on term-overlap criteria. 

The filter computes a simple comparability score for every document pair and returns only those 

document pairs that have received a score higher than a given threshold. The comparability score of a 

bilingual document pair currently depends on the number of common terms the two documents share. 

This comparability evaluation approach is lightweight, fast and insensitive to the direction of 

language pair (same results for both e.g. en-el and el-en language pairs), but it does not go through 

other important corpora comparability aspects. Therefore, it should rather be used mostly when either 

the source or the target language corpus returned by the focused crawlers is large enough (e.g. 

includes around a hundred of thousands of web documents or more). 

For enabling PreDAF’s comparability score computation the user has to provide parallel term lists. 

That is, topic definition files that have been used for crawling web documents for given source and 

target languages must be made “parallel” or “aligned” before being fed to the pre-alignment filter. 

“Alignment” of the topic definition files is done by inserting an ID code after every text line of those 

files. Terms sharing the same ID code are considered parallel. As described in subsection 3.2.5 above, 

the format of every text line of a topic definition file is as follows: 

<Term Score>: <Word or Multi Word Expression>=<Subtopic> 

The previous text line format should be changed to
13

: 

<Term Score>: <Word or Multi Word Expression>=<Subtopic> tab <ID> 

For example, two topic definition files that have been used for collecting English and Greek web 

documents on renewable energy topic after they have been “aligned” for being used by the pre-

alignment filter should look like this: 

Excerpt of the aligned English topic definition file 

100: renewable energy=RE 1 

100: natural resources=RE 2 

100: natural processes=RE 3 

100: biogas=RE 4 

100: renewable power generators=RE 5 

100: wind turbines=RE 6 

100: wind speed=RE 7 

.... 

Excerpt of the aligned Greek topic definition file 

100: ανανεώσιμες πηγές ενέργειας=RE 1 

100: φυσικές πηγές=RE 2 

                                                      
13

 Note the tab character between <Subtopic> and <ID> fields. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 29 of 46 

100: φυσικές διεργασίες=RE 3 

100: βιοαέριο=RE 4 

100: γεννήτριες ηλεκτροπαραγωγής=RE 5 

100: ανεμογεννήτρια=RE 6 

100: ταχύτητα ανέμου=RE 7 

..... 

Again, lines of the two “aligned” topic definition files having the same ID indicate that the underlying 

EN and EL terms are parallel, e.g. "biogas" is parallel to "βιοαέριο", because they share the same ID 

(= 4). 

PreDAF tool is a standalone Java executable, which can be executed by any system that runs a Java 

Runtime Environment 1.6 or above.There are no specific hardware requirements beyond those needed 

for running the JRE. No installation is needed. The tool must run after FMC or WFMC has 

successfully exited a given extract mode, since it relies on data files that have been created by those 

two crawlers. Additional information on other input and output data format is given by the Table 5 

that follows.  

The syntax for running PreDAF is the following: 

java -jar ilsp-fmc-prealigner.jar –i1 indir1 -i2 indir2 -l logfile –t1 

topic1 –t2 topic2 –o outfile –t threshold 

PreDAF command arguments are described in the following table (Table 5). 

 

Table 5 Command line input arguments for running PreDAF tool. 

Argument Description 

-i1, --indir1 Full path of folder containing collected web documents for first language, 

e.g. -i1 /home/ACCURAT/FMC2/CrawledData/WE/EN/xml/ 

 

-i2, --indir2 Full path of folder containing collected web documents for second language, 

e.g. -i1 /home/ACCURAT/FMC2/CrawledData/WE/EL/xml/ 

 

-l, --logfile Name of the file to store logs. 

 

-t1, --topic1 Full path of topic definition file for the first language; the topic definition 

file must have been filled in with IDs (see above for explanations). 
 

-t2, --topic2 Full path of topic definition file for the second language; the topic definition 

file must have been filled in with IDs (see above for explanations). 

 

-o, --outfile Full path or name of the file to write results. The file lists pairs of bilingual 

documents that have comparability score above threshold. Every text line 

has the following format (L1; 1
st
 language, L2: 2

nd
 language): 

 

/L1_folder/L1_filename TAB /L2_folder/L2_filename TAB Comparability Score 
 

A sample output file should look like this: 

 

/en/en_1.txt ΤΑΒ /el/el_1.txt ΤΑΒ 8 

/en/en_2.txt ΤΑΒ /el/el_3.txt ΤΑΒ 6 

/en/en_2.txt ΤΑΒ /el/el_9.txt ΤΑΒ 5 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 30 of 46 

Argument Description 

 

-t, --threshold An integer value specifying the documents comparability threshold. This 

currently is indicated by the minimum number of common terms two 

documents must share in order to be considered comparable and enlisted to 

the output file (document pairs list). Typical values are 3 to 5. 

 

Note that the –h switch alone displays usage instructions on screen. 

3.2.7. Contact 

For further information and technical support installing and/or running this tool, please email to Nikos 

Glaros: nglaros@ilsp.gr. 

3.3. Wikipedia Retrieval Tool  

3.3.1. Overview and Purpose 

Wikipedia contains a large number of documents from various topics and languages. When these 

articles describe the same topic, they are connected to each other by Wikipedia interlanguage links, 

enabling us to extract a corpus which is already aligned in document level. Even though these 

documents contain the same topic, their ranges of comparability varies widely: some articles might be 

translation of each other; however, some of them might be written independently and do not contain 

any shared information. Inclusion of these documents in the corpora might reduce the MT 

performance. Therefore, a retrieval tool is needed to identify and gather the comparable documents 

only. 

Different to a crawling tool, this retrieval tool makes use of available Wikipedia dump data (available 

for download in http://dumps.wikimedia.org) which contains extensive information of Wikipedia 

documents, including interlanguage links between bilingual articles. A subset of Wikipedia dump data 

which was downloaded in March 2010 has been included in this tool for testing reasons. Should 

different data be needed for further evaluation, the process of downloading them is described in 

section 3.3.4. 

This tool aims to identify and retrieve comparable documents by specifically looking for pairs which 

contain similar sentences (sentences with information overlap, such as links – also referred to as 

anchor texts – and words). Language independent feature is used in this method, therefore this tool 

can be applied to retrieve Wikipedia documents for any language pairs. The full description of this 

retrieval methods is described in D3.4. 

This tool will produce corpora containing comparable documents and their alignments at document 

level. 

3.3.2. Software Dependencies and System Requirements 

This tool is developed in Perl and can be run in Windows and Linux platforms. This tool required the 

following: 

1. Perl v5.10 or above; and 

2. 1+ GB RAM. 

3.3.3. Installation 

To start using this tool, simply copy and extract “WikipediaRetrieval.rar” and read the “readme.txt” to 

get further information. The description of execution instructions is described in the next section.  

mailto:nglaros@ilsp.gr
http://dumps.wikimedia.org/


 Contract no. 248347  

 

 

D3.5 V3.0  Page 31 of 46 

3.3.4. Execution Instructions 

As described in the overview, this tool retrieves comparable documents from Wikipedia by analysing 

comparable segments in the documents. Therefore, this tool needs Wikipedia documents of the source 

and target languages along with the alignment file as initial corpus. To extract these documents from 

Wikipedia, users need to follow these steps: 

1. First, Wikipedia regularly releases database dump containing article contents of each 

available language, which is made available in http://dumps.wikimedia.org/[lang]wiki, e.g. 

http://dumps.wikimedia.org/enwiki/ for English Wikipedia. Language should be specified 

by using ISO-639-1 language codes. At the time when this document is written, these files 

are named as “[lang]wiki-[date]-pages-articles.xml.bz2”, e.g. “enwiki-20110901-pages-

articles.xml.bz2” for English documents. This XML file contains all contents of Wikipedia 

documents in that particular language. Users will need to download two files: one of the 

source language and one of the target language, later referred to as “[pageOfSourceLang]” 

and “[pageOfTargetLang]”. 

2. After these files are downloaded and extracted, users need to run this command to save each 

document in each language into a separate file
14

 to enable further processing, and extract 

alignment information between documents in both languages: 

perl WikipediaExtractor.pl --source [sourceLang] --target [targetLang] -–

sourcePage [pageOfSourceLang] --targetPage [pageOfTargetLang] --output 

[outputFolder] 

 This script requires several parameters: 

a. [sourceLang] and [targetLang] represent any ACCURAT languages which are 

represented in ISO-639-1 language codes, such as “lv” (Latvian), “lt” (Lithuanian), 

“en” (English), etc. 

b. [pageOfSourceLang] and [pageOfTargetLang] represent the Wikipedia database 

dumps decribed previously.  

c. [outputPath] represents an output folder in which the extracted documents and the 

alignment will be stored. 

Please note that this process in general is very time consuming especially for English and 

German as they contain a large number of documents. 

3. This process will have the initial corpus and alignment file as outputs and store them in the 

specified “[outputFolder]”. For example, when using “C:/Corpora/” as an output folder 

when extract LV-EN documents, this initial corpus will be stored in “C:/Corpora/lv/” for the 

LV documents and “C:/Corpora/en/” for the EN documents; alignment file will be stored in 

“C:/Corpora/lv_en.txt/”. 
After these files are made available, users can start the retrieval process by running this command: 

perl WikipediaRetrieval.pl --source [sourceLang] --target [targetLang] –-

alignment [alignmentFile] –sourceFolder [folderPathForSourceDocs] -–

targetFolder [folderPathForTargetDocs] –-output [outputFolder] 

This script requires several parameters: 

1. [sourceLang] and [targetLang] represent the source and target language of documents 

which are represented in the ISO-639-1 language codes, such as “lv” (Latvian), “lt” 

(Lithuanian), “en” (English), etc. 

2. [alignmentFile] represents the file containing the alignment between the documents in both 

languages.  

3. [folderPathForSourceDocs] and [folderPathForTargetDocs] represent the absolute path of 

the folders containing the Wikipedia documents for both languages. 

4. [outputFolder] represents the path of the folder in which the corpora will be stored. 

                                                      
14 We disregard Wikipedia documents which do not contain main topics, such as User pages, Discussion pages, Category 

pages, or Redirection pages. 

http://dumps.wikimedia.org/%5blang%5dwiki
http://dumps.wikimedia.org/enwiki/


 Contract no. 248347  

 

 

D3.5 V3.0  Page 32 of 46 

This retrieval method contains five main processes as shown in Figure 4. 

The description of each process is described below: 

1. ExtractBilingualLexicon.pl: 

This script builds bilingual lexicons by extracting document titles which are connected by 

interlanguage links by Wikipedia. Therefore, this retrieval tool does not need any linguistic 

resources to perform translation. 

2. FilterWikipedia.pl: 

This script filters out unnecessary information in Wikipedia documents, such as footnotes, 

table formatting, images, etc. 

3. SentenceSplitter.pl: 

This script aims to split documents into sentences, enabling further process to find 

information overlap in sentence level. 

4. ReplaceAnchorsUsingBilingualLexicon.pl: 

This script replaces all links (anchor texts) in the source documents with its corresponding 

text in the target language if they are available in the bilingual lexicon 

5. ComparabilityMeasurerOnSentenceLevel.pl: 

Last, this script measures the comparability of the documents on the sentence level on all the 

available document pairs in the specified language pair by measuring word overlap. 

A more detailed explanation of this process is described in D3.4. 

 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 33 of 46 

 

Figure 4. Data Flow Diagram of Wikipedia Retrieval 

 

 

Source 

Language 

 

Target 

Language 

Post-processed 

documents 

2.FilterWikipedia.pl 

 

List of 

Paired 

Docs 

 

Source 

Language 

 

Target 

Language 

Pre-processed 

documents 

(paired by 

Wikipedia 

inter-language 

links) 

3.SentenceSplitter.pl 

 

Source 

Language 

 

Target 

Language 

 

Source 

Language 

 

Target 

Language 

4.ReplaceAnchorsUsing-

BilingualLexicon.pl 

5.ComparabilityMeasurerOn-

SentenceLevel.pl 

1.Extract-

Bilingual-

Lexicon.pl 

 

 

Bilingual 

Lexicons 

Anchor-

translated 

documents 

Plain 

documents 

If score < 0.1, filter out documents 

INITIAL CORPUS 

COMPARABLE CORPUS 

 

List of 

Paired 

Docs 

Document Alignment 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 34 of 46 

3.3.5. Input and Output Data Format 

This section will describe the format of input and output data for this tool. To run the “Wikipedia 

Retrieval” tool, users need to have the following files as input: 

1. Alignment file for each language pair, which shows the following information: [sourceDoc 

ID], [sourceDoc Title], [targetDoc ID] and [targetDoc Title]. An example of this file is 

shown in Figure 5. This file can be extracted from Wikipedia by using the process described 

in the previous section. 

1151884 Informationsökonomie 10 Information_economics 

2398435 Strahlenphysik 13664288 Radiophysics 

837854 Jugoslawiendeutsche 6026882 Germans_of_Yugoslavia 

..... 

Figure 5. Example Alignment File of DE-EN language pair 

2. Wikipedia articles in the Wiki markup
15

 for each language pair. As shown in Figure 6, the 

file contains not only the text, but also all the links contained in the article, shown in the 

[[anchor]] text. These files are also the results from WikipediaExtractor tool described in 

the previous section. 

'''Europe''' () is, by convention, one of the world's seven [[continent]]s. 

Comprising the westernmost [[peninsula]] of [[Eurasia]], Europe is 

generally divided from [[Asia]] to its east by the [[water divide]] of the 

[[Ural Mountains]], the [[Ural (river)|Ural River]], the [[Caspian Sea]], 

the [[Caucasus Mountains]] (or the [[Kuma-Manych Depression]]), and the 

[[Black Sea]] to the southeast.  Europe is bordered by the [[Arctic Ocean]] 

and other bodies of water to the north, the [[Atlantic Ocean]] to the west, 

the [[Mediterranean Sea]] to the south, and the [[Black Sea]] and connected 

waterways to the southeast. Yet the borders for Europe—a concept dating 

back to [[classical antiquity]]—are somewhat arbitrary, as the term 

''continent'' can refer to a [[human geography|cultural and political]] 

distinction or a [[physical geography|physiographic]] one. 

... 

Figure 6. Example of English Wiki Article 

This retrieval tool will produce several outputs during the process: 

1. “[sourceLang]_[targetLang]_bilingualLexicon.txt”: this file contains bilingual lexicon 

previously extracted from document titles in the alignment file. 

16. septembris September 16 

Lejassaksija Lower Saxony 

Bluā grāfi Counts of Blois 

Mursija Murcia 

Gņevkovo Gniewkowo 

Jamalas Ņencu autonomais apvidus Yamalo-Nenets Autonomous Okrug 

Aiči prefektūra Aichi Prefecture 

... 

Figure 7. Example of Latvian-English Bilingual Lexicon 

2. Filtered documents: two folders named “[sourceLang]-filtered” and “[targetLang]-filtered” 

contain Wikipedia documents which have been filtered. In this phase, all unnecessary 

                                                      
15

 http://en.wikipedia.org/wiki/Help:Wiki_markup 

http://en.wikipedia.org/wiki/Help:Wiki_markup


 Contract no. 248347  

 

 

D3.5 V3.0  Page 35 of 46 

formatting and unused sections are filtered out. Examples of files for each filtering phase are 

explained in more detail in D3.4. 

3. Line separated documents: two folders named “[sourceLang]-filtered-lineSeparated” and 

“[targetLang]-filtered-lineSeparated” contain Wikipedia documents which have been split 

into sentences. 

4. Anchors replaced documents: two folders named “[sourceLang]-filtered-lineSeparated-

anchors-replaced” and “[targetLang]-filtered-lineSeparated-anchors-replaced” contain 

Wikipedia documents which have had all the links (anchors) translated. 

5. Comparability scores, named “[sourceLang]-[targetLang]-scores.txt” contains the 

comparability scores for all the document pairs. An example output is shown in Figure 8. It 

contains information regarding numbers of sentences in each document, numbers of valid 

sentences (based on filtering described in D3.4) and numbers of paired sentences. Three 

different comparability scores are shown in the document: 

5.1. maximal comparability score of a sentence pair in that document 

5.2. average score of the paired sentences 

5.3. average score of the document. 

The first line of the comparability score document contains tab-separated column titles. In 

order to present a sample document within the documentation, the heading line contains an 

abbreviated form of titles, where: 

 “Src_ID” represents “Source_ID” 

 “Trg_ID” represents “Target_ID” 

 “Src_Sn” represents “Source_NoOfSentence” 

 “Trg_Sn” represents “Target_NoOfSentence” 

 “VSrcSn” represents “ValidSourceSentence” 

 “VTrgSn” represents “ValidTargetSentence” 

 “PrdSn” represents “NoOfPairedSentence” 

 “MaxParSn” represents “MaxScoreOfParSentences” 

 “AvgAllPrdSn” represents “AvgScoreForAllPairedSentences” 

 “AvgDc” represents “AvgScoreForDocs” 

Src_ID Trg_ID Src_Sn Trg_Sn VSrcSn VTrgSn PrdSn MaxParSn AvgAllPrdSn AvgDc 

178527 127731 40 15 20 11 1 0.11 0.11 0.01 

14363 127002 69 9 30 8 2 0.18 0.14 0.036 

7538 70521 23 24 12 18 0 0 0 0 

23302 27399 30 41 20 30 0 0 0 0 

65537 63067 8 8 2 2 1 0.36 0.36 0.18 

63162 165479 63 6 50 3 3 0.28 0.18 0.18 

... 

Figure 8. Comparability Scores Output 

Please note that all five previous outputs are produced by processes involved in the tool as 

shown in the data flow diagram. They are needed to identify and retrieve comparable 

documents, however, once the corpora are built, all these documents will not be needed for 

further processing and may be deleted from the system unless are needed for other 

purposes. 

6. The main output from this tool is the comparable corpus, which is stored in the output path 

previously specified by users. This path will include a subfolder named “[sourceLang]-

[targetLang]”, e.g. “lv-en” for Latvian-English corpora. This folder will contain the 

following files: 

6.1. Alignment file, listing the absolute path of source document and target document in 

the corpus, as shown in Figure 9. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 36 of 46 

C:\Corpora\lv\52836_lv.txt C:\Corpora\en\697540_en.txt 

C:\Corpora\lv\19028_lv.txt C:\Corpora\en\59727_en.txt 

C:\Corpora\lv\45155_lv.txt C:\Corpora\en\4410977_en.txt 

... ... 

Figure 9. Example of LV-EN Alignment File 

6.2. Plain text of comparable Wikipedia documents. These files will be included in two 

folders named “[sourceLang]” and “[targetLang]”, e.g. for LV-EN, these folders will 

be named “lv” and “en”. 

3.3.6. Contact 

For further information and technical support installing and/or running this tool, please contact 

Monica Paramita: m.paramita@shef.ac.uk. 

3.4. News Information Downloader using RSS feeds 

3.4.1. Overview and Purpose 

Reports in different languages about the same event can be regarded as comparable because, while not 

direct translations of each other, they are likely to say some of the same things and hence are likely to 

share some textual units, which are translations of each other. The aim of this tool is to collect news 

articles from the web. To do this it uses monolingual RSS feeds, which are XML structured 

documents. It parses each of the XML documents and records the news published within each RSS 

feed document.  

Please note that the output of this tool as well as the output of the tools described in sections 3.5 and 

3.6 are collected in pools to produce the comparable corpora. More precisely, for each language a 

pool is generated that contains all the output of all these tools for that particular language. The entries 

in each pool are compared to the others to perform alignment between the news articles. For instance, 

we compare the articles from the English pool with the ones in the German pool to produce a English-

German comparable corpora. The alignment is performed using the News Article Alignment and 

Content Downloading Tool described in section 3.7. 

3.4.2. Software Dependencies and System Requirements 

The tool requires Java 1.5 or above and 1 GB RAM. It also requires an Internet Connection. 

3.4.3. Installation 

The tool does not require any specific installation. It can be run using the feedDownloader.jar file. 

3.4.4. Execution Instructions 

To run the tool simply use this command (works both in Unix and Windows): 

 

java -jar feedDownloader.jar pathToInputFile pathToSaveOutput languageCode 

The command requires the following parameters: 

 pathToInputFile is the full path path to a file that contains all the RSS feed URLs. 

 pathToSaveOutput is the full path to a file where the tool needs to write the outputs (e.g. 

“C:\\feedDownloader\\results.txt”) 

 languageCode is the language code in ISO-639-1 standard (e.g. “de” for German) 

3.4.5. Input and Output Data Format 

The input to the tool is a file that contains in each entry a RSS feed URL as shown below: 

http://www.kasjauns.lv/objs/xml/news.xml?news_lang_id=1 

http://feeds.tvnet.lv/tvnet/izklaide/latest?fmt=xml  

file:///C:/Users/Monica/Documents/Downloads/a.aker@dcs.shef.ac.uk
http://www.kasjauns.lv/objs/xml/news.xml?news_lang_id=1
http://feeds.tvnet.lv/tvnet/izklaide/latest?fmt=xml


 Contract no. 248347  

 

 

D3.5 V3.0  Page 37 of 46 

http://feeds.feedburner.com/BootlvPortativieDatori?fmt=xml  

The output is another file (encoded in UTF-8) that contains on each line information about a news 

event (each field is tab separated): 

url 

language Code 

title 

date of publication 

An example output entry is: 

http://feedproxy.google.com/~r/BootlvPortativieDatori/~3/3jwRpPoC0NE/ lv

 Motorola izlaidusi Lapdock 100 viedtālruņu “dokstaciju” Wed, 12 

Oct 2011 08:07:18 +0000 

3.4.6. Contact 

For further information and technical support for installing and/or running this tool, please contact  

Ahmet Aker: a.aker@dcs.shef.ac.uk. 

3.5. News Information Downloader using Google News Search 

3.5.1. Overview and Purpose 

Similar to the News Information Downloader using RSS feeds tool this tool downloads monolingual 

news articles from the Web. It uses Google News search
16

 to obtain the news articles. The details how 

it searches in the Google News is described in Deliverable 3.4.  

3.5.2. Software Dependencies and System Requirements 

The tool requires Java 1.5 or above and 1 GB RAM. It also requires an Internet Connection. 

3.5.3. Installation 

The tool does not require any specific installation. It can be run using the googleNewsDownloader.jar 

file. 

3.5.4. Execution Instructions 

To run the tool simply use this command (works both in Unix and Windows): 

java –jar googleNewsDownloader.jar pathConfigFile pathToSaveOutput 

The command requires the following parameters: 

 pathToConfigFile is the path to a file that contains all the requried information: 

o language code (e.g. “de”), in ISO-639-1 standard 

o Google News Search registration key 

o User’s web site address 

Each field must be supplied on a separate line in the order shown above. You can get the 

Google News Search registration id from http://code.google.com/apis/loader/signup.html. 

The web site address is the one the user enters when registering for the Google News Search 

Key. Please note that the user must create this configuration file himself. It is not provided 

with this tool. 

Example of such a config file: 

de 

                                                      
16 http://news.google.co.uk/ 

http://feeds.feedburner.com/BootlvPortativieDatori?fmt=xml
mailto:a.aker@dcs.shef.ac.uk
http://code.google.com/apis/loader/signup.html


 Contract no. 248347  

 

 

D3.5 V3.0  Page 38 of 46 

googleId111111 

www.dummy.com 

 

 pathToSaveOutput is the full path to a file where the tool will write its outputs (e.g. 

“C:\\googleNewsDownloader\\results.txt”) 

3.5.5. Input and Output Data Format 

The input to the tool is a configuration file as described in the preceeding section. The output is 

another file that contains on each line the following data about a news event (each field is tab 

separated): 

 url 

 language Code 

 title 

 date of publication 

An example output entry is: 

http://feedproxy.google.com/~r/BootlvPortativieDatori/~3/3jwRpPoC0NE/ lv

 Motorola izlaidusi Lapdock 100 viedtālruņu “dokstaciju” Wed, 12 

Oct 2011 08:07:18 +0000 

3.5.6. Contact 

For further information and technical support for installing and/or running this tool, please contact 

Ahmet Aker: a.aker@dcs.shef.ac.uk. 

3.6. News Text Crawler and RSS Feed gatherer 

3.6.1. Overview and Purpose 

A crawler suitable for extracting texts for parallel phrase extraction. Given a list of URLs, the tool 

observes any restrictions imposed on automatic programs visiting the webpages specified in the 

domain's robots.txt files. The tool's  focus is news texts, with the assumption that the same news 

stories are likely to be covered in similar ways in multiple languages. Some online newspapers do not 

allow a full automatic crawl of their webpages (by specifying this in their “robots.txt” file), instead 

they provide an RSS feed. Therefore our “crawler” consists of two parts: 

 URL crawl. 

 RSS feed gathering. 

Given files containing URLs to crawl, the crawler (retrieve_crawled.pl) enforces “robots.txt” 

compatibility, and tags downloaded files with the time-stamp of the download. To prevent 

duplicates (should the crawl be restarted), md5sums of the new pages are compared against existing 

downloaded pages -- in case of duplication, the more recent download is discarded. Therefore, the 

crawler can be restarted to allow re-crawls of news sites, or could even be run in a continuous loop 

through the use of a wrapper script (such a script is not included and would need to be created by the 

user). Given files containing lists of RSS feeds, the RSS feed retrieval tool (retrieve_rss_feeds.pl) 

downloads the most recent RSS stories from each feed. As with the URL crawler, the user can 

implement either of two options for repeated downloading: 

 set up the program to repeat with a time-based job scheduler (e.g., every 10 minutes). For 

example, under Unix, this would be a repeating cron job. 

 a wrapper script to repeat the program's execution; a loop returning to the start of the RSS 

links list, possibly with an enforced time delay, a maximum number of repeats or set to 

repeat infinitely. 

http://www.dummy.com/
mailto:a.aker@dcs.shef.ac.uk


 Contract no. 248347  

 

 

D3.5 V3.0  Page 39 of 46 

3.6.2. Software Dependencies and System Requirements 

The tool consists of multiple Perl programs and as such is not dependent on any particular platform. 

Should speed be an issue, parallelization could be achieved simply by a division of the input URL / 

RSS lists. The amount of data requested will affect the storage requirements. The Perl packages 

required for correct operation of the tool include: 

 LWP::RobotUA 

 HTML::LinkExtractor 

 XML::RSS::Parser::Lite (and thus XML::Parser and XML::Parser::Lite) 

 LWP::UserAgent 

 LWP::UserAgent 

 Digest::MD5 

 File::Copy 

3.6.3. Installation 

Perl is not a compiled program, however, the Perl packages described above need to be installed for 

the tool to run. For example, on a Unix machine running Fedora 15 these could be installed through 

the Comprehensive Perl Archive Network (CPAN – directions for installation of cpan are available 

from http://www.cpan.org  if this is not already a part of the user's system) by: 

 cpan[1]> install LWP::RobotUA 

 cpan[2]> install HTML::LinkExtractor 

 cpan[3]> install XML::Parser 

 cpan[4]> install XML::Parser::Lite 

 cpan[5]> install XML::RSS::Parser::Lite 

 cpan[6]> install Digest::MD5 

 cpan[7]> install File::Copy 

The News text crawler and RSS feed gatherer is located in the 

“D3_5_Section_3_6_rssNewsCrawlerUSFD.zip” archive, which contains the following files: 

 Useful.pm 

 Crawler.pm 

 retrieve_crawled.pl 

 rss_parse.pl 

 retrieve_rss_feeds.pl 

During execution, programs should be given overriding arguments for “<path to data directory>”. In 

the absence of an overriding value, the tools assume that “HOME/projects/accurat/data” is a viable 

path on the system. 

3.6.4. Execution Instructions 

The programs are all invoked through a command line. 

Crawling Listed URLs 

perl retrieve_crawled.pl <path to data directory> 

This program assumes the existence of an “url_source” directory within the “<path to data 

directory>”, and will create a “url_downloads” directory (if this is does not exist already) in the same 

location. The “url_downloads” directory will contain the tool's output. 

The “url_source” directory should contain files containing URLs (divided per language), for example: 

[accurat url_source]$ ls 

url_Cro.txt url_Deu.txt url_Lva.txt url_Svn.txt 

http://www.cpan.org/


 Contract no. 248347  

 

 

D3.5 V3.0  Page 40 of 46 

url_Cze.txt url_Grc.txt url_Rom.txt url_UK.txt 

The filename is expected to start with “url_”, be followed by a country identifier (which needs to 

match one of the abbreviations above), and have a text file extension. The URLs are listed in a one per 

line form as follows: 

http://www.pravednes.cz/ 

http://www.eurozpravy.cz 

http://www.novinky.cz/deniky 

... 

Gathering Listed RSS Feeds 

perl retrieve_rss_feeds.pl <path to data directory> 

This program assumes the existence of an “rss_source” directory within the “<path to data 

directory>”, and will create an “rss_downloads” directory (if this does not already exist). The 

“rss_downloads” directory will contain the output. 

The “rss_source” directory should contain files containing URLs (divided per country), for example: 

[accurat rss_source]$ ls 

rss_Cro.txt rss_Deu.txt rss_Lva.txt rss_Svn.txt 

rss_Cze.txt rss_Grc.txt rss_Rom.txt rss_UK.txt 

The filename is expected to start with “rss_”, be followed by a country identifier (which needs to 

match one of the abbreviations above), and have a text file extension. The RSS feeds are listed in a 

one per line form as follows: 

http://www.rssmonitor.cz 

http://seznam.sblog.cz/rss.xml 

http://rss.eurozpravy.cz/ 

http://www.scienceweek.cz/rss.php 

... 

3.6.5. Input and Output Data Format 

3.6.5.1. Crawling Listed URLs 

The crawler, “retrieve_crawled.pl”, is invoked with a path to a data directory containing a 

subdirectory “url_source” with a number of “url_<country>” files. Each “url_<country>” file 

consists of one link per line, links relating to starting points for the crawler. For example: 

http://www.pravednes.cz/ 

http://www.eurozpravy.cz 

http://www.novinky.cz/deniky 

... 

While crawling, the program produces output in a subdirectory of the data directory named 

“url_downloads”, creating a directory per “<country>”. 

[accurat url_downloads]$ ls 

cro cze deu grc lva rom svn uk 

The HTML source of each crawled page is stored within the “<country>” directory. As much as 

possible, the original name of the web page is used to create the name of the file, subject to: 

 A maximum length limit 

 Replacing of special characters (such as spaces etc.) 

 The addition of the timestamp of the download 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 41 of 46 

For example, the URL http://www.twitter.com downloaded on the 19 October 2011 at 8am would 

yield the following filename: 

httpXYYtwitterZcom-20111019080000 

The program also produces output to STDERR to allow monitoring of its progress, reporting on the 

current web page sought, the status of retrieval, whether it was saved and how many links are 

remaining to be searched.  

3.6.5.2. Gathering Listed RSS feeds 

The RSS gatherer, “retrieve_rss_feeds.pl”, is invoked with a path to a data directory containing a 

subdirectory “rss_source” with a number of “rss_<country>” files. Each “rss_<country>” file 

consists of one link per line, links relating to an RSS feed. For example: 

http://www.rssmonitor.cz 

http://seznam.sblog.cz/rss.xml 

http://rss.eurozpravy.cz/ 

http://www.scienceweek.cz/rss.php 

... 

While retrieving RSS feeds, the program produces output in a subdirectory of the data directory 

named “rss_downloads”, creating a directory per “<country>”. 

[accurat rss_downloads]$ ls 

Cro Cze Deu Grc Lva Rom Svn UK 

The Resource Description Framework (RDF) encoded document of the retrieved RSS feeds is stored 

within the “<country>” directory. As much as possible, the original name of the web page is used to 

create the name of the file, subject to: 

 A maximum length limit 

 Replacing of special characters (such as spaces etc) 

 The addition of the timestamp of the download 

For example, repeated downloads of the RSS feeds from http://www.scienceweek.cz/rss/ create the 

following files in the “rss_downloads” subdirectory: 

... 

httpXYYwwwZscienceweekZczYrssY-20111011135319.rdf 

httpXYYwwwZscienceweekZczYrssY-20111011142237.rdf 

httpXYYwwwZscienceweekZczYrssY-20111011145150.rdf 

httpXYYwwwZscienceweekZczYrssY-20111011152603.rdf 

... 

The program also produces output to STDERR to allow monitoring of its progress, reporting on the 

current RSS feed being sought, whether it was found to be well formed, and how many items were on 

the page if it was well formed. 

3.6.6. Contact 

For further information and technical support installing and/or running this tool, please contact Judita 

Preiss: j.preiss@sheffield.ac.uk. 

3.7. News Article Alignment and Downloading Tool 

3.7.1. Overview and Purpose 

The purpose of this tool is to (1) align or pair news articles written in different languages and (2) to 

download the content of the paired News URLs. This uses as input the output produced by the tools 

http://www.twitter.com/
http://www.scienceweek.cz/rss/
mailto:j.preiss@sheffield.ac.uk


 Contract no. 248347  

 

 

D3.5 V3.0  Page 42 of 46 

described in Sections 3.4, 3.5 and 3.6. For a pair of given News URLs it streams the HTML codes, 

extracts the text from them and saves the extracted text in separate files. The files are encoded in 

UTF-8.  

In step (1) it uses the titles of the news articles and the date information to produce alignment between 

the articles written in source and target langauges. The source language could be English and the 

target language German. In this case it aligns English news articles with German ones to produce 

comparable corpora. The details of the pairing process is described in Deliverable 3.4.  

To perform step (2) the tool uses an HTML parser
17

 to construct a parsing tree from the HTML 

document following the Document Object Model (DOM)
18

. Within this parsing tree the tool checks 

only the BODY and the TITLE tags of the document. It ignores the SCRIPT, TABLE and the FORM 

tags within the BODY tag as these are likely not to contain relevant text. In addition to this, it ignores 

parts of the BODY that contains enumeration of information such as menu items, copy right 

information, privacy notices and navigation hyperlinks. Furthermore, short texts are ignored as well as 

they are likely to contain advertisements. A text is considered short if it has less than 5 words. This 

number was optimized after a couple of experiments. The text identified by the tool as pure is then 

prepared for saving. The tool replaces any ASCII coding within the text and adds a dot on the end of 

each paragraph if it is not ended with a punctuation 

3.7.2. Software Dependencies and System Requirements 

The tool requires Java 1.5 or above and 1 GB RAM. It also requires Internet Connection. 

3.7.3. Installation 

The tool does not require any installation. It can be run using the newsContentDownloader.jar file (see 

section 3.7.4). 

3.7.4. Execution Instructions 

To run the tool simply use this command (works both in Unix and Windows): 

java –jar NewsContentDownloader.jar [pathToSourceNewsFile] 

[pathToTargetNewsFile] [pathToOutputFolder] [sourceLangCode] 

[targetLangCode] [threshold] [translationOption] 

[pathToTargetTitlesTranslatedIntoSourceLang]   

The command requires the following parameters: 

 pathToSourceNewsFile is the path to a file that contains all the information collected through 

the tools described in Sections 3.4, 3.5 and 3.6. The News articles are in the source language 

(e.g. in English). 

 pathToTargetNewsFile is the path to a file that contains all the information collected through 

the tools described in Sections 3.4, 3.5 and 3.6. The News articles are in the target language 

(e.g. in German). 

 pathToOutputFolder is the full path to a folder where the tool needs to write the output 

 sourceLangCode  is the source language code according to the ISO-639-1 standard (e.g. „en” 

for English) 

 targetLangCode is the target language code according to the the ISO-639-1 standard (e.g. 

„de” for German) 

 threshold is the similarity value between two titles and ranges between 0 to 1. If 0 is given 

than every title in the the source language will be paired with every title in the target 

language. In case of 1 only exact matches of source language title and translation of target 

language titles are paired. 

                                                      
17 http://htmlparser.sourceforge.net/ 

18 http://www.w3.org/DOM/ 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 43 of 46 

 translationOption - two values: „DICT” or „EXIST”.  

o In case of „DICT” the tool will perform a translation based on dictionaries. It will 

translate the target language article titles into the source language. To do this it 

requires target-to-source dictionaries. These dictionaries must be stored in the „dict” 

subdirectory of „NewsContentDownloader” and must have the file name according to 

„targetLangCode” + „_” + „sourceLangCode” + „.txt”, e.g. „de_en.txt”. The format 

of the dictionaries is the same as in the DicMetric tool described in Deliverable 2.6. 

o In case of „EXIST” the user can providea translation file that contains translations of 

the target language article titles. To do this an additional argument has to be provided 

to the tool: pathToTargetTitlesTranslatedIntoSourceLang. 

 pathToTargetTitlesTranslatedIntoSourceLang is the path to a file that contains all target 

language titles translated into the source language. Note that for this purpose translation tools 

described in Deliverable 2.6 can be used. The file contains in each line a title translation. Each 

line must correspond to a line in the pathToTargetNewsFile. This parameter is not needed if 

the „DICT” translation option is used. 

3.7.5. Input and Output Data Format 

The inputs to the tool are listed in Section 3.7.4. 

The output is a collection of files containing the textual content of the paired News URLs. The files 

are encoded in UTF-8. The tool generates under the given folder (pathToOutputFolder) a sub-folder. 

This sub-folder is named “[source language code]-[target language code]” (e.g. “en-de”). 

Within this sub-folder the tool creates two further sub-folders, one for each language (e.g. “en” and 

“de”). The source files are saved into the source folder and the target files into the target folder. It also 

creates a file that gives alignment or pairing information. This file (“alignment.txt” is saved e.g. in the 

“en-de” folder. The structure of this file is as following: 

F:/output/en-de/en/html-1.txt \t F:/output/en-de/de/html-1.txt \t score 

F:/output/en-de/en/html-2.txt \t F:/output/en-de/de/html-2.txt \t score 

… 

if “F:/output” was the path where to save. The last value in each line (score) specifies the score of the 

alignment and can vary betwee 0 and 3. 

3.7.6. Contact 

For further information and technical support installing and/or running this tool, please contact Ahmet 

Aker: a.aker@dcs.shef.ac.uk. 

  

mailto:a.aker@dcs.shef.ac.uk


 Contract no. 248347  

 

 

D3.5 V3.0  Page 44 of 46 

 

4. Conclusion 
In this document we provide technical documentation of tools which have been used within the 

ACCURAT project to collect parallel and comparable corpora from the web.  

We described tools including focused web crawlers, a Wikipedia corpus collector and news search 

and crawl tools. For the news search and crawl tools we also provide an alignment and HTML text 

content downloading tool that aligns news articles written in different languages and downloads the 

textual content from the HTML presentation of the aligned articles to compose news comparable 

corpora. 

In combination with the tools described in D2.6 the user is now fully equipped to obtain additional 

training data for SMT or Example-based/Rule-based MT. This documentation contains step-by-step 

instructions explaining how to install and run the tools. Significant effort has been made to ensure 

these instructions are understable by users with average computer skills. 

  



 Contract no. 248347  

 

 

D3.5 V3.0  Page 45 of 46 

 

5. References 

5.1. A Workflow-based Corpora Crawler 
Radu Ion, Dan Tufiş, Tiberiu Boroş, Alexandru Ceauşu, and Dan Ştefănescu. On-Line Compilation of 

Comparable Corpora and their Evaluation. In Marko Tadić, Mila Dimitrova-Vulchanova, and Svetla 

Koeva (eds.), Proceedings of The 7th International Conference Formal Approaches to South Slavic 

and Balkan Languages (FASSBL-7), pp. 29—34, Croatian Language Technologies Society – Faculty 

of Humanities and Social Sciences, Zagreb, Croatia, October 2010. ISBN: 978-953-55375-2-6. 
Skadina, I., Vasiljevs, A., Skadinš, R., Gaizauskas, R., Tufis, D. Gornostay, T.: Analysis and 

Evaluation of Comparable Corpora for Under Resourced Areas of Machine Translation. In 

Proceedings of the 3rd Workshop on Building and Using Comparable Corpora, LREC 2010, Malta, 

pp. 6-14. 

Munteanu, D. S., and Marcu, D. (2006). Extracting Parallel Sub-Sentential Fragments from Non-

Parallel Corpora. In Proceedings of the 21st International Conference on Computational Linguistics 

and 44th Annual Meeting of the ACL, pages 81–88, Sydney, July 2006. ©2006 Association for 

Computational Linguistics 

5.2. ILSP FMC tool references 

M. Braschler and P. Scäuble. 1998. Multilingual information retrieval based on document alignment 

techniques. In ECDL ’98: Proceedings of the Second European Conference on Research and 

Advanced Technology for Digital Libraries, London: Springer-Verlag. 183–197.  

A. Eisele and J. Xu. May 2010. Improving Machine Translation Performance Using Comparable 

Corpora. Proceedings of the 3rd Workshop on Building and Using Comparable Corpora, European 

Language Resources Association (ELRA), La Valletta, Malta. 35-41. 

A. Hassan, H. Fahmy and H. Hassan. 2007. Improving named entity translation by exploiting 

comparable and parallel corpora. In Proceedings of the 2007 Conference on Recent Advances in 

Natural Language Processing (RANLP), AMML Workshop. 

R. Ion, D. Tufiş, T. Boroş, A. Ceauşu, D. Ştefănescu. October 2010. On-Line Compilation of 

Comparable Corpora and their Evaluation. Proceedings of the 7th International Conference Formal 

Approaches to South Slavic and Balkan Languages (FASSBL7), Croatian Language Technologies 

Society – Faculty of Humanities and Social Sciences, University of Zagreb, Dubrovnik, Croatia. 29-

34. 

D. S. Munteanu. December 2006. Exploiting Comparable Corpora. PhD Thesis, University of 

Southern California. ©2007 ProQuest Information and Learning Company. 

P. Sheridan and J. P. Ballerini. 1996. Experiments in multilingual information retrieval using the 

SPIDER system. In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference 

on Research and development in information retrieval, New York: ACM Press. 58–65. 

I. Skadiņa, A. Aker, V. Giouli, D. Tufis, R. Gaizauskas, M. Mieriņa, N. Mastropavlos. October 2010. 

A Collection of Comparable Corpora for Under-resourced Languages. Proceedings of the Fourth 

International Conference Baltic HLT 2010, IOS Press, Frontiers in Artificial Intelligence and 

Applications, Vol. 219, Riga, Latvia. 161-168. 

I. Skadiņa, A. Vasiljevs, R. Skadinš, R. Gaizauskas, D. Tufis, T. Gornostay. 2010. Analysis and 

Evaluation of Comparable Corpora for Under Resourced Areas of Machine Translation. Proceedings 

of the 3rd Workshop on Building and Using Comparable Corpora. LREC, Malta. 6-14. 

T. Talvensaari, J. Laurikkala, K. Järvelin, M. Juhola and H. Keskustalo. 2007. Creating and exploiting 

a comparable corpus in cross-language information retrieval. ACM Trans. Inf. Syst., 25(1), 4. 



 Contract no. 248347  

 

 

D3.5 V3.0  Page 46 of 46 

T. Talvensaari, A. Pirkola, K. Järvelin, M. Juhola and J. Laurikkala. October 2008. Focused Web 

crawling in the acquisition of comparable corpora. Information Retrieval, 11, 5, 427-445. 

T. Tao and C. Zhai. 2005. Mining Comparable Bilingual Text Corpora for Cross-Language 

Information Integration. In Proceedings of the 11th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining (KDD’05). 691–696. 

T. Utsuro, T. Horiuchi, Y. Chiba and T. Hamamoto. 2002. Semi-automatic compilation of bilingual 

lexicon entries from cross-lingually relevant news articles on WWW news sites. In AMTA ’02: 

Proceedings of the 5th Conference of the Association for Machine Translation in the Americas on 

Machine Translation: From Research to Real Users, London: Springer-Verlag. 165–176. 

 


